Gradienadalah suatu ukuran yang digunakan untuk menentukan kemiringan pada suatu garis, atau disebut juga tangen yang dilambangkan dengan "m". B. Rumus Menentukan Gradien. Ada 2 rumus yang digunakan untuk menentukan gradien (kemiringan) suatu garis, berikut rumus untuk mencari gradien garis, yaitu: 1.
ο»Ώ0% found this document useful 0 votes6 views1 pageOriginal Titlepersamaan garis singgung turunan fungsi Β© All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes6 views1 pagePersamaan Garis Singgung Turunan Fungsi TrigonometriOriginal Titlepersamaan garis singgung turunan fungsi to Page You are on page 1of 1Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Cerilahpersamaan garis singgung dan garis normal kurva fungsi berikut ini pada titik yang ditunjukkan. y=sin 2x pada x=pi/8. Turunan Trigonometri. Persamaan Garis Singgung pada Kurva. Turunan Fungsi Trigonometri.
Jakarta - Turunan trigonometri adalah suatu persamaan turunan yang melibatkan fungsi-fungsi trigonometri misalnya sin sinus, cos cosinus, tan tangen, cot cotangen, sec secant, dan csc cosecant.Rumus turunan trigonometri digunakan untuk mengetahui tingkat perubahan yang berkaitan dengan suatu memperoleh turunan fungsi trigonometri, maka dengan mencari limit fungsi trigonometri. Hal ini karena turunan adalah bentuk khusus dari limit. Selain itu, turunan dapat menyatakan perubahan fungsi pada ini pembahasan terkait turunan trigonometri mulai dari definisi hingga rumusnya secara Turunan TrigonometriDalam Modul Matematika Kelas XII yang disusun oleh Entis Sutisna, trigonometri adalah salah satu cabang matematika yang berkaitan dengan sudut segitiga dan fungsi trigonometri seperti sin, cos, tan, dan lainnyaSedangkan turunan yaitu laju perubahan suatu fungsi terhadap perubahan peubahnya. Perlu diketahui, turunan fx ditulis f'a dimana tingkat perubahan fungsi ada pada titik turunan trigonometri merupakan proses matematis guna memperoleh turunan pada sebuah fungsi f' dibaca f aksen dapat disebut sebagai suatu fungsi baru. Pada fungsi trigonometri yang biasanya dipakai yaitu sin x, cos x, dan tan Turunan Fungsi TrigonometriJika f x = sin x artinya f 'x = cos xJika f x = cos x artinya f 'x = βsin xJika f x = tan x artinya f 'x = sec2 xJika f x = cot x artinya f 'x = βcsc2xJika f x = sec x artinya f 'x = sec x . tan xJika f x = csc x artinya f 'x = βcsc x . cot xRumus tersebut digunakan untuk memperoleh hasil turunan trigonometri. Lalu bagaimana contoh soalnya?Contoh Soal 1Tentukan y' dari y = -2 cos xJawaby = -2 cos xy' = -2 -sin xMaka, y' = 2 sin xContoh Soal 2Tentukan y' dari y = 4 sin x + 5 cos xJawaby = 3 sin x + 5 cos xy' = 3 cos x + 5 -sin xMaka, y' = 3 cos x - 5 sin xContoh Soal 3Tentukan y' dari y = 4 cos x - 2 sin xJawaby = 4 cos x - 2 sin xy' = 4 -sin x - 2 cos xMaka, y' = -4 sin x - 2 cos xAplikasi Turunan Fungsi TrigonometriTurunan fungsi trigonometri diaplikasikan dalam bidang matematika dan kehidupan nyata, berikut diantaranyaMenentukan kemiringan garis singgung kurva trigonometri y = fxMenentukan kemiringan garis normal terhadap kurva trigonometri y = fxMenentukan persamaan pada garis normal kurva dan garis singgungTurunan fungsi trigonometri dapat dimanfaatkan di berbagai bidang seperti elektronik, pemrograman komputer, dan pemodelan fungsi siklik yang berbedaMenentukan nilai maksimum dan minimum dari fungsi pembahasan terkait turunan trigonometri yang perlu kamu ketahui. Yuk coba latihan dengan soal turunan lainnya! Simak Video "Dokter Sarankan Tetap Pakai Masker saat Beraktivitas di Luar" [GambasVideo 20detik] pal/pal
penggunaanturunan, menentukan persamaan garis singgung fungsi trigonometri About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new
Salah satu aplikasi atau pemanfaatan konsep turunan diferensial dalam matematika adalah untuk menentukan gradien dan persamaan garis singgung dari suatu kurva. Kebermanfaatan konsep tersebut tentunya dalam ranah bidang geometri. Konsep turunan dapat dipakai untuk menentukan gradien garis singgung dikarenakan adanya fakta bahwa nilai turunan suatu fungsi pada titik tertentu adalah gradien garis singgung grafik fungsi di titik tersebut. Baca Juga Soal dan Pembahasan β Aplikasi Turunan Diferensial Nah, untuk memantapkan pemahaman mengenai ini, kita sajikan soal beserta pembahasannya yang mungkin saja dapat dijadikan referensi untuk belajar. Semoga bermanfaat. Today Quote Emas lebih berharga dari kayu. Namun, saat kita akan tenggelam, kayulah yang menjadi penyelamat. Sederhananya, jangan meremehkan kemampuan orang lain. Baca Juga Soal dan Pembahasan β Turunan Fungsi Aljabar Bagian Pilihan Ganda Soal Nomor 1 Grafik fungsi $fx=x^2-4x+5$ menyinggung garis $g$ di $x = -1$. Gradien garis $g$ adalah $\cdots \cdot$ A. $-8$ C. $-2$ E. $6$ B. $-6$ D. $4$ Pembahasan Diketahui $fx=x^2-4x+5.$ Turunan pertama dari fungsi $fx$ adalah $f'x = 2x-4.$ Gradien garis singgung $g$ diperoleh saat $x = -1,$ yaitu $m = f'-1 = 2-1-4=-6.$ Jadi, gradien garis $g$ adalah $\boxed{-6}$ Jawaban B [collapse] Soal Nomor 2 Garis $k$ menyinggung grafik fungsi $gx=3x^2-x+6$ di titik $B2, 16$. Persamaan garis $k$ adalah $\cdots \cdot$ A. $y=2x-16$ B. $y=2x+16$ C. $y=11x-6$ D. $y=11x+6$ E. $y=11x+16$ Pembahasan Diketahui $gx=3x^2-x+6.$ Turunan pertama dari fungsi $gx$ adalah $g'x = 6x-1.$ Karena titik singgungnya di $\color{red}{2}, 16$, gradien garis singgung $k$ diperoleh saat $\color{red}{x = 2},$ yaitu $m = g'2 = 62-1=11.$ Persamaan garis yang bergradien $m = 11$ dan melalui titik $x_1, y_1 = 2, 16$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-16 & = 11x-2 \\ y-16 & = 11x-22 \\ y & = 11x-6 \end{aligned}$ Jadi, persamaan garis $k$ adalah $\boxed{y=11x-6}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan β Turunan Fungsi Trigonometri Soal Nomor 3 Jika garis $l$ menyinggung kurva dengan persamaan $y=x^3-5x^2+7$ di titik $1,3$, maka persamaan garis $l$ adalah $\cdots \cdot$ A. $10x+y-7=0$ B. $7x+y-10=0$ C. $7x+y-2=0$ D. $5x+y-7=0$ E. $x-y-5=0$ Pembahasan Diketahui $y=x^3-5x^2+7.$ Turunan pertama dari $y$ adalah $yβ = 3x^2-10x.$ Karena titik singgungnya di $\color{red}{1}, 3$, maka gradien garis singgung $l$ diperoleh saat $\color{red}{x = 1}$, yaitu $m = yβ_{x=1} = 31^2-101 = -7.$ Persamaan garis yang bergradien $m = -7$ dan melalui titik $x_1, y_1 = 1, 3$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = -7x-1 \\ y-3 & -7x+7 \\ 7x+y-10 & = 0 \end{aligned}$ Jadi, persamaan garis $l$ adalah $\boxed{7x+y-10=0}$ Jawaban B [collapse] Soal Nomor 4 Persamaan garis singgung kurva dengan persamaan $y=x^2+1^2$ di titik dengan absis $x=1$ adalah $\cdots \cdot$ A. $y=8x+10$ B. $y=8x+8$ C. $y=8x+4$ D. $y=8x-4$ E. $y=8x-10$ Pembahasan Diketahui $y=x^2+1^2.$ Titik singgung berabsis $x = 1$ sehingga $y = 1^2+1^2 = 2^2 = 4.$ Jadi, koordinat titik singgung di $1, 4$. Turunan pertama dari $y$ dapat ditentukan dengan menggunakan aturan rantai atau bisa juga dengan dijabarkan lebih dulu, yaitu $yβ = 2x^2+1\underbrace{2x}_{y} = 4xx^2+1.$ Karena titik singgungnya berabsis $x=1$, gradien garis singgungnya diperoleh saat $x = 1$, yaitu $\begin{aligned} m & = yβ_{x=1} = 411^2+1 \\& = 42 = 8. \end{aligned}$ Persamaan garis yang bergradien $m = 8$ dan melalui titik $x_1, y_1 = 1, 4$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-4 & = 8x-1 \\ y-4 & = 8x-8 \\ y & = 8x-4. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{y = 8x-4}$ Jawaban D [collapse] Soal Nomor 5 Persamaan garis singgung kurva dengan persamaan $y=x^3$ di titik $A$ yang berordinat $8$ adalah $\cdots \cdot$ A. $12x-y+16=0$ B. $x-12y+16=0$ C. $12x-y-16=0$ D. $x-12y-16=0$ E. $12x+y+16=0$ Pembahasan Diketahui $y=x^3.$ Titik singgung berordinat $y = 8$sehingga $8 = x^3 \Leftrightarrow x = 2$. Jadi, koordinat titik singgung di $2, 8.$ Turunan pertama dari $y$ adalah $yβ = 3x^2.$ Karena titik singgungnya $\color{red}{2}, 8,$ maka gradien garis singgungnya diperoleh saat $\color{red}{x = 2}$, yaitu $m = yβ_{x=2} = 32^2 = 12.$ Persamaan garis yang bergradien $m = 12$ dan melalui titik $x_1, y_1 = 2, 8$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-8 & = 12x-2 \\ y-8 & = 12x-24 \\ y-12x+16 & = 0 \\ \text{Kalikan}~-1&~\text{di kedua ruas} \\ 12x-y-16 & = 0 \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{12x-y-16=0}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan β Sistem Koordinat Kartesius Soal Nomor 6 Persamaan garis singgung kurva $y=x^2+2x-1$ di titik yang berordinat $2$ adalah $\cdots \cdot$ A. $4x+y-3=0$ B. $4x-y-2=0$ C. $3x-y-1=0$ D. $3x-y+1=0$ E. $x-y+1=0$ Pembahasan Diketahui $y=x^2+2x-1.$ Titik singgung berordinat $y = 2$ sehingga $\begin{aligned} x^2+2x-1 & = 2 \\ x^2+2x-3 & = 0 \\ x+3x-1 & = 0. \end{aligned}$ Diperoleh $x = -3$ atau $x=1.$ Jadi, koordinat titik singgung di $-3, 2$ dan $1, 2.$ Kemungkinan 1 TS di $-3, 2.$ Turunan pertama dari $y$ adalah $yβ = 2x+2.$ Karena titik singgungnya $\color{red}{-3}, 2$, gradien garis singgungnya diperoleh saat $\color{red}{x = -3},$ yaitu $m = yβ_{x=-3} = 2-3 + 2 = -4.$ Persamaan garis yang bergradien $m = -4$ dan melalui titik $x_1, y_1 = -3, 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = -4x+3 \\ y-2 & = -4x-12 \\ 4x+y+10 & = 0. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{4x+y+10=0}$ Kemungkinan 2 TS di $1, 2.$ Turunan pertama dari $y$ adalah $yβ = 2x+2.$ Karena titik singgungnya $\color{red}{1}, 2,$ maka gradien garis singgungnya diperoleh saat $\color{red}{x = 1}$, yaitu $m = yβ_{x=-3} = 21 + 2 = 4.$ Persamaan garis yang bergradien $m = 4$ dan melalui titik $x_1, y_1 = 1, 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = 4x-1 \\ y-2 & = 4x-4 \\ 4x-y-2 & = 0. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{4x-y-2=0}$ Jawaban B [collapse] Baca Juga Soal dan Pembahasan β Konsep, Sifat, dan Aturan dalam Perhitungan Turunan Dasar Soal Nomor 7 Garis singgung pada parabola $y=x^2+6\dfrac12x+14\dfrac12$ yang sejajar dengan garis $x-2y+3=0$ adalah $\cdots \cdot$ A. $x-2y-9=0$ B. $x+2y-13=0$ C. $2y+x+12=0$ D. $2y-x-11=0$ E. $2y-x-1=0$ Pembahasan Diketahui $y=x^2+6\dfrac12x+14\dfrac12.$ Turunan pertama dari $y$ adalah $yβ = 2x + 6\dfrac12.$ Garis $x-2y + 3 = 0$ memiliki gradien $m = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{-2} = \dfrac12.$ Substitusi $yβ = \dfrac12$sehingga kita peroleh $\begin{aligned} \dfrac12 & = 2x + 6\dfrac12 \\ -6 & = 2x \\ x & = -3. \end{aligned}$ Selanjutnya, substitusi $x = -3$ pada $y.$ $\begin{aligned} y & =x^2+6\dfrac12x+14\dfrac12 \\ & = -3^2+6\dfrac12-3 + 14\dfrac12 \\ & = 9-19\dfrac12+14\dfrac12 \\ & = 9-5 = 4 \end{aligned}$ Jadi, titik singgungnya di $-3, 4.$ Persamaan garis yang bergradien $m = \dfrac12$ dan melalui titik $x_1, y_1 = -3, 4$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-4 & = \dfrac12x+3 \\ 2y-8 & = x+3 \\ 2y-x-11 & = 0 \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{2y-x-11=0}$ Jawaban D [collapse] Soal Nomor 8 Garis singgung kurva $y=\dfrac13x^3+x^2$ yang tegak lurus dengan garis $x-y+3=0$ adalah $\cdots \cdot$ A. $x+y+1=0$ B. $2x+2y+1=0$ C. $3x+3y+1=0$ D. $3x+3y-1=0$ E. $3x+3y-2=0$ Pembahasan Diketahui $y = \dfrac13x^3 + x^2.$ Gradien garis $x-y+3=0$ adalah $mβ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{-1} = 1.$ Gradien garis yang tegak lurus dengannya adalah $m = -\dfrac{1}{mβ} = -\dfrac{1}{1} = -1.$ Nilai turunan pertama dari $y = \dfrac13x^3 + x^2$ pada absis titik singgung adalah gradien garis singgungnya, yaitu $m = -1$. Dengan demikian, kita tuliskan $\begin{aligned} yβ & = x^2 + 2x \\ m = yβ_{x = a} & = a^2+2a \\ -1 & = a^2+2a \\ a^2+2a+1 & = 0 \\ a+1^2 & = 0. \end{aligned}$ Diperoleh $a = -1$, artinya absis titik singgungnya adalah $x = -1.$ Sekarang substitusikan $x = -1$ pada $y.$ $\begin{aligned} y & = \dfrac13x^3 + x^2 \\ & = \dfrac13-1^3 + 1^2 \\ & = -\dfrac13 + 1 = \dfrac23 \end{aligned}$ Jadi, titik singgungnya di $\left-1, \dfrac23\right.$ Persamaan garis yang bergradien $m = -1$ dan melalui titik $\left-1, \dfrac23\right$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-\dfrac23 & = -1x+1 \\ y-\dfrac23 & = -x-1 \\ x+y+\dfrac13 & = 0 \\ \text{Kalikan 3}&~\text{di kedua ruas} \\ 3x+3y+1 & = 0. \end{aligned}$ Jadi, persamaan garis singgung tersebut dinyatakan oleh $\boxed{3x+3y+1 = 0}$ Jawaban C [collapse] Soal Nomor 9 Garis $g$ menyinggung grafik fungsi $fx=-2x^2-x+8$. Jika gradien garis singgung tersebut adalah $m = 7$, maka titik singgung antara grafik fungsi $f$ dan garis $g$ adalah $\cdots \cdot$ A. $-2,2$ D. $2,2$ B. $-2,4$ E. $2,4$ C. $0,2$ Pembahasan Diketahui $fx=-2x^2-x+8.$ Misalkan titik singgungnya di $a, b.$ Substitusi $x = a$ pada $f'x$ untuk mendapatkan gradien garis singgung diketahui di sini bahwa $m = 7$. $\begin{aligned} f'x & = -4x-1 \\ m = f'a & = -4a-1 \\ 7 & = -4a-1 \\ 8 & = -4a \\ a & = -2 \end{aligned}$ Substitusi $x = -2$ pada $fx$. $\begin{aligned} fx & = -2x^2-x+8 \\ f-2 & = -2-2^2-2+8 \\ b & = -24+10 = 2 \end{aligned}$ Jadi, titik singgung antara grafik fungsi $f$ dan garis $g$ adalah $\boxed{-2, 2}$ Jawaban A [collapse] Soal Nomor 10 Diketahui garis singgung parabola $y=4x-x^2$ di titik $A1,3$ juga merupakan garis singgung parabola $y=x^2-6x+p$. Nilai $p$ yang memenuhi adalah $\cdots \cdot$ A. $17$ C. $9$ E. $-17$ B. $15$ D. $-15$ Pembahasan Diketahui $y = 4x-x^2.$ Turunan pertamanya adalah $yβ = 4-2x.$ Gradien garis singgung di $x = 1$ adalah $m= yβ_{x=1} = 4-21=2.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 3$ dan bergradien $m = 2$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = 2x-1 \\ y & = 2x+1. \end{aligned}$ Garis $y = 2x + 1$ juga menyinggung parabola $y = x^2-6x+p$ sehingga kita tuliskan $\begin{aligned} x^2-6x+p & = 2x+1 \\ x^2-8x+p-1 & = 0. \end{aligned}$ Syarat dua kurva bersinggungan adalah nilai diskriminan persamaan kuadrat tersebut nol. $\begin{aligned} D & = b^2-4ac \\ 0 & = -8^2-41p-1 \\ 0 & = 64-4p+4 \\ 4p & = 68 \\ p & = 17 \end{aligned}$ Jadi, nilai $p$ yang memenuhi adalah $\boxed{17}$ Jawaban A [collapse] Baca Juga Soal dan Pembahasan β Titik Tengah Ruas Garis dan Jarak Dua Titik Soal Nomor 11 Grafik fungsi $gx=x^3-3x^2+3x-1$ melalui titik $A3,8$. Persamaan garis singgung grafik fungsi $g$ di titik $A$ adalah $\cdots \cdot$ A. $y=3x-28$ B. $y=3x+38$ C. $y=11x-28$ D. $y=11x-38$ E. $y=11x+38$ Pembahasan Diketahui $gx=x^3-3x^2+3x-1.$ Titik singgung di $3, 8.$ Substitusi $x = 3$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 3x^2-6x+3 \\ m = f'3 & = 33^2-63+3 \\ m & = 27-18+3 = 12 \end{aligned}$ Persamaan garis yang melalui titik $x_1, y_1 = 3, 8$ dan bergradien $m = 12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-8 & = 12x-3 \\ y-8 & = 12x-36 \\ y & = 12x-28. \end{aligned}$ Jadi, persamaan garis singgung grafik fungsi $g$ di titik $A$ adalah $\boxed{y=12x-28}$ Jawaban C [collapse] Soal Nomor 12 Persamaan garis singgung kurva $fx=\sqrt{2x+3}$ yang tegak lurus garis $3x+y-2=0$ adalah $\cdots \cdot$ A. $9x-3y+14=0$ B. $8x-24y+39=0$ C. $9x-y-6=0$ D. $3x-y-12=0$ E. $x-3y+6=0$ Pembahasan Diketahui $fx = \sqrt{2x+3}.$ Gradien garis $3x+y-2=0$ adalah $mβ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{3}{1} = -3.$ Gradien garis yang tegak lurus dengannya adalah $m = -\dfrac{1}{mβ} = -\dfrac{1}{-3} = \dfrac13.$ Nilai turunan pertama dari $fx$ pada absis titik singgung adalah gradien garis singgungnya, yaitu $m = \dfrac13$. Dengan demikian, kita tuliskan $$\begin{aligned} fx & = \sqrt{2x+3} = 2x+3^{1/2} \\ f'x & = \dfrac{1}{\cancel{2}}2x+3^{-1/2}\cancel{2} \\ f'x & = \dfrac{1}{\sqrt{2x+3}} \\ m = f'a & =\dfrac{1}{\sqrt{2a+3}} \\ \dfrac13 & = \dfrac{1}{\sqrt{2a+3}} \\ \sqrt{2a+3} & = 3 \\ 2a+3 & = 9 \\ 2a & = 6 \\ a & = 3. \end{aligned}$$Diperoleh $a = 3$, artinya absis titik singgungnya adalah $x = 3.$ Sekarang substitusikan $x = 3$ pada $fx.$ $\begin{aligned} fx & = \sqrt{2x+3} \\ f3 & = \sqrt{23+3} \\ & = \sqrt9 = 3 \end{aligned}$ Jadi, titik singgungnya di $3, 3.$ Persamaan garis yang bergradien $m = \dfrac13$ dan melalui titik $3,3$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-3 & = \dfrac13x-3 \\ 3y-9 & = x-3 \\ x-3y+6 & = 0 \end{aligned}$ Jadi, persamaan garis singgung tersebut dinyatakan oleh $\boxed{x-3y+6=0}$ Jawaban E [collapse] Soal Nomor 13 Persamaan garis yang melalui titik $A1,1$ dan tegak lurus dengan garis singgung kurva $fx=x^3-3x^2+3$ di titik tersebut adalah $\cdots \cdot$ A. $y+3x-4=0$ B. $y+3x-2=0$ C. $3y-x+2=0$ D. $3y-x-2=0$ E. $3y-x-4=0$ Pembahasan Diketahui $fx=x^3-3x^2+3.$ Titik singgung di $1, 1.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 3x^2-6x \\ mβ = f'1 & = 31^2-61 \\ & = 3-6 = -3 \end{aligned}$ Garis yang tegak lurus dengannya memiliki gradien $m = -\dfrac{1}{mβ} = -\dfrac{1}{-3} = \dfrac13.$ Persamaan garis yang melalui titik $x_1, y_1 = 1,1$ dan bergradien $m = \dfrac13$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = \dfrac13x-1 \\ 3y-3 & = x-1 \\ 3y-x-2 & = 0 \end{aligned}$ Jadi, persamaan garis tersebut dinyatakan oleh $\boxed{3y-x-2=0}$ Jawaban D [collapse] Soal Nomor 14 Garis $\ell$ tegak lurus garis $g$ dan melalui titik $A3,1.$ Garis $g$ menyinggung kurva $fx=2x^2-6x+4$ di titik $B1,0.$ Persamaan garis $\ell$ adalah $\cdots \cdot$ A. $2x+y=1$ B. $x+2y=1$ C. $2x-y=1$ D. $x-2y=1$ E. $2y-x=1$ Pembahasan Diketahui $fx=2x^2-6x+4.$ Titik singgung di $1, 0.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung. $\begin{aligned} f'x & = 4x-6 \\ mβ = f'1 & = 41-6 = -2 \end{aligned}$ Garis yang tegak lurus dengannya memiliki gradien $m = -\dfrac{1}{-2} = \dfrac{1}{2}.$ Persamaan garis yang melalui titik $x_1, y_1 = 3,1$ dan bergradien $m = \dfrac12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = \dfrac12x-3 \\ 2y-2 & = x-3 \\ x-2y & = 1. \end{aligned}$ Jadi, persamaan garis $\ell$ dinyatakan oleh $\boxed{x-2y=1}$ Jawaban D [collapse] Baca Juga Materi, Soal, dan Pembahasan β Fungsi Naik dan Fungsi Turun Soal Nomor 15 Persamaan garis normal kurva $fx=3x^3-3x+2$ di $x=1$ adalah $\cdots \cdot$ A. $x-6y=13$ B. $x+6y=13$ C. $y-6x=13$ D. $6y-x=13$ E. $6x+y=13$ Pembahasan Diketahui $fx=3x^3-3x+2.$ Substitusi $x = 1$ untuk mencari ordinat titik singgungnya. $\begin{aligned} f1 & = 31^3-31+2 \\ & = 3-3+2 = 2 \end{aligned}$ Jadi, titik singgungnya di $1, 2.$ Nilai turunan $fx$ di $x = 1$ adalah gradien garis singgungnya. $\begin{aligned} f'x & = 33x^2-3 \\ & = 9x^2-3 \\ mβ = f'1 & = 91^2-3 = 6 \end{aligned}$ Garis normal adalah garis yang tegak lurus terhadap garis singgung sehingga gradiennya adalah $m = -\dfrac{1}{mβ} = -\dfrac16.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 2$ dan bergradien $m = -\dfrac16$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-2 & = -\dfrac16x-1 \\ 6y-2 & = -x-1 \\ 6y-12 & = -x+1 \\ x+6y & = 13. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{x+6y=13}$ Jawaban B [collapse] Soal Nomor 16 Persamaan garis normal kurva $fx=-2x^3+6x^2$ di titik $P$ adalah $6y+x=25.$ Koordinat titik $P$ adalah $\cdots \cdot$ A. $-1,2$ D. $1,4$ B. $-1,4$ E. $2,1$ C. $1,2$ Pembahasan Diketahui $fx=-2x^3+6x^2.$ Gradien garis normal $6y+x=25$ adalah $mβ = -\dfrac{\text{Koef}.x}{\text{Koef}.y} = -\dfrac{1}{6}.$ Garis singgung adalah garis yang tegak lurus garis normalsehingga gradien garis singgung adalah $m = -\dfrac{1}{mβ} = 6.$ Misalkan titik singgung di $Pa, b.$ Substitusi $x = a$ pada $f'x$ untuk mendapatkan gradien garis singgung diketahui di sini bahwa $m = 6$. $\begin{aligned} fx & = -2x^3+6x^2 \\ f'x & = -6x^2+12x \\ m = f'a & = -6a^2+12a \\ 6 & = -6a^2+12a \\ 6a^2-12a+6 & = 0 \\ \text{Kedua ruas dibagi}~&6 \\ a^2-2a+1 & = 0 \\ a-1^2 & = 0 \end{aligned}$ Diperoleh $a = 1.$ Substitusi $x = 1$ pada $fx.$ $\begin{aligned} fx & = -2x^3+6x^2 \\ f1 & = -21^3 + 61^2 \\ b & = -2+6 = 4 \end{aligned}$ Jadi, koordinat titik $P$ adalah $\boxed{1, 4}$ Jawaban D [collapse] Soal Nomor 17 Persamaan garis singgung pada kurva $y = \tan x$ di titik $\left\dfrac{\pi}{4}, 1\right$ adalah $\cdots \cdot$ A. $y = 2x + \left1+\dfrac{\pi}{2}\right$ B. $y = 2x + \left\dfrac{\pi}{2}-1\right$ C. $y = 2x + \left1-\dfrac{\pi}{2}\right$ D. $y = 2x + 2-\pi$ E. $y = 2x + 2+\pi$ Pembahasan Diketahui $y = \tan x$ dan titik singgungnya $\left\dfrac{\pi}{4}, 1\right.$ Pertama, akan dicari turunan dari $y$, yaitu $yβ = \sec^2 x.$ Substitusi $x = \dfrac{\pi}{4}$ pada $yβ$ sehingga kita peroleh gradien garis singgungnya, yakni $m = \sec^2 \dfrac{\pi}{4} = \sqrt2^2 = 2.$ Persamaan garis singgung yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{4}, 1\right$ dan bergradien $m = 2$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ & = 2\leftx-\dfrac{\pi}{4}\right+1 \\ & = 2x-\dfrac{\pi}{2}+1 \\ & = 2x + \left1-\dfrac{\pi}{2}\right. \end{aligned}$ Jadi, persamaan garis singgung kurva di titik tersebut adalah $\boxed{y = 2x + \left1-\dfrac{\pi}{2}\right}$ Grafiknya dapat dilihat pada gambar berikut. Jawaban C [collapse] Soal Nomor 18 Persamaan garis singgung yang melalui kurva $y = \sin x + \cos x$ di titik yang berabsis $\dfrac{\pi}{2}$ akan memotong sumbu-$Y$ dengan ordinatnya adalah $\cdots \cdot$ A. $-\dfrac{\pi}{2} + 1$ D. $\dfrac{\pi}{2}$ B. $-\dfrac{\pi}{2}$ E. $\dfrac{\pi}{2} + 1$ C. $-\dfrac{\pi}{2}- 1$ Pembahasan Diketahui $y = \sin x + \cos x.$ Substitusi $x = \dfrac{\pi}{2}$ untuk memperoleh $y = \sin \dfrac{\pi}{2} + \cos \dfrac{\pi}{2}= 1 + 0 = 1.$ Titik singgungnya di $\left\dfrac{\pi}{2}, 1\right.$ Turunan dari $y$ adalah $yβ = \cos x-\sin x.$ Gradien garis singgung $m$ adalah nilai $yβ$ saat $x = \dfrac{\pi}{2}$, yakni $\begin{aligned} yβ = m & = \cos \dfrac{\pi}{2}-\sin \dfrac{\pi}{2} \\ & = 0-1 = -1. \end{aligned}$ Persamaan garis yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{2}, 1\right$ dan bergradien $m = -1$ adalah $\boxed{\begin{aligned} y-y_1 & = mx-x_1 \\ y-1 & = -1\leftx-\dfrac{\pi}{2}\right \\ y & = -x + \dfrac{\pi}{2} + 1. \end{aligned}}$ Garis ini memotong sumbu-$Y$ saat nilai $x = 0$ sehingga didapat $\boxed{y = 0 + \dfrac{\pi}{2} + 1 = \dfrac{\pi}{2} + 1}$ Grafiknya dapat dilihat pada gambar berikut. Jawaban E [collapse] Bagian Uraian Soal Nomor 1 Carilah gradien garis singgung pada kurva dengan persamaan $y = 3x^3-6x^2+8x+10$ pada $x=2.$ Pembahasan Gradien garis singgung pada kurva dengan persamaan $y = 3x^3-6x^2+8x+10$ pada $x=2$ adalah $\dfrac{\text{d}y}{\text{d}x}_{x = 2}.$ Turunan pertama diberikan oleh $$\dfrac{\text{d}y}{\text{d}x} = 9x^2-12x+8$$Dengan demikian, $\begin{aligned} m & = \dfrac{\text{d}y}{\text{d}x}_{x = 2} \\ & = 92^2-122+8 \\ & = 36-24+8 = 20. \end{aligned}$ Jadi, gradien garis singgungnya adalah $\boxed{20}$ [collapse] Soal Nomor 2 Grafik fungsi $fx=-x^3+3x^2-4x+5$ melalui titik $A3,-7$. Tentukan persamaan garis singgung grafik fungsi $f$ di titik $A$. Pembahasan Diketahui $fx=-x^3+3x^2-$ $4x+5.$ Titik singgung di $3, -7.$ Substitusi $x = 3$ pada $f'x$ untuk memperoleh gradien garis singgungnya. $\begin{aligned} f'x & = -3x^2+6x-4 \\ m = f'3 & = -33^2 + 63-4 \\ & = -27+18-4 = -13 \end{aligned}$ Persamaan garis yang melalui $x_1, y_1 = 3, -7$ dan bergradien $m = -13$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-7 & = -13x-3 \\ y+7 & = -13x+39 \\ y & = -13x+32. \end{aligned}$ Jadi, persamaan garis singgungnya adalah $\boxed{y=-13x+32}$ [collapse] Baca Juga Pembuktian Turunan Fungsi Trigonometri Dasar Soal Nomor 3 Titik $P2,4$ terletak pada kurva $fx=ax^2+bx+2.$ Jika garis singgung kurva di titik $P$ sejajar dengan garis $y = 5x-6,$ tentukan nilai $a$ dan $b.$ Pembahasan Diketahui $fx=ax^2+bx+2$ dan $P2, 4$ terletak pada kurva $fx.$ Substitusi $x = 2$ pada $fx$. $\begin{aligned} f2 & = a2^2+b2+2 \\ 4 & = 4a+2b+2 \\ 2 & = 4a+2b \\ 1 & = 2a+b && \cdots 1 \end{aligned}$ Gradien garis $y = 5x-6$ adalah $mβ = 5$. Karena sejajar dengan garis singgung, gradien garis singgungnya adalah $m = mβ = 5.$ Substitusi $x = 2$ pada $f'x$ untuk memperoleh gradien garis singgung. $\begin{aligned} fx & = ax^2+bx+2 \\ f'x & = 2ax + b \\ m = f'2 & = 2a2 + b \\ 5 & = 4a + b && \cdots 2 \end{aligned}$ Dari persamaan $1$ dan $2$, diperoleh $\boxed{a = 2}$ dan $\boxed{b = -3}$ [collapse] Soal Nomor 4 Titik $A1, a+2$ terletak pada kurva $fx=ax^2-a+1x+6.$ Tentukan persamaan garis normal kurva di titik $A$. Pembahasan Diketahui $fx=ax^2-a+1x+6$ dan titik $A1, a+2$ terletak pada kurva $fx.$ Substitusi $x = 1$ pada $fx$. $\begin{aligned} f1 & = a1^2-a+11 + 6 \\ a+2 & = a-a+1+6 \\ a+2 & = 5 \\ a & = 3 \end{aligned}$ Dengan demikian, $fx = 3x^2-4x +6$ dan $A1, 5.$ Substitusi $x = 1$ pada $f'x$ untuk mendapatkan gradien garis singgung di $A$. $\begin{aligned} f'x & = 6x-4 \\ mβ = f'1 & = 61-4 \\ mβ & = 2 \end{aligned}$ Garis normal adalah garis yang tegak lurus dengan garis singgung sehingga gradiennya adalah $m = -\dfrac{1}{mβ} = -\dfrac12.$ Persamaan garis yang melalui titik $x_1, y_1 = 1, 5$ dan bergradien $m = -\dfrac12$ adalah $\begin{aligned} y-y_1 & = mx-x_1 \\ y-5 & = -\dfrac12x-1 \\ 2y-10 & = -x+1 \\ x+2y & = 11. \end{aligned}$ Jadi, persamaan garis normal di titik $A$ adalah $\boxed{x+2y=11}$ [collapse] Soal Nomor 5 Tentukan persamaan garis singgung pada kurva fungsi trigonometri di bawah ini di titik yang diberikan. $fx = \sin x$ di titik dengan absis $x = \dfrac{\pi}{6}.$ $fx = \cot x-2 \csc x$ di titik dengan absis $x = \dfrac{\pi}{3}.$ Pembahasan Jawaban a Untuk $x = \dfrac{\pi}{6},$ diperoleh $f\left\dfrac{\pi}{6}\right = \sin \dfrac{\pi}{6} = \dfrac12.$ Titik singgung di $\left\dfrac{\pi}{6}, \dfrac12\right.$ Turunan pertama fungsi $fx= \sin x$ adalah $f'x = \cos x.$ Gradien garis singgungnya adalah nilai fungsi $fβ$ saat $x = \dfrac{\pi}{6}$, yaitu $m = fβ\left\dfrac{\pi}{6}\right = \cos \dfrac{\pi}{6} = \dfrac12\sqrt3.$ Persamaan garis singgung kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{6}, \dfrac12\right$ dan bergradien $m = \dfrac12\sqrt3$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ y & = \dfrac12\sqrt3\leftx-\dfrac{\pi}{6}\right + \dfrac12 \\ 2y & = \sqrt3\leftx-\dfrac{\pi}{6}\right +1 \end{aligned}$ Jadi, persamaan garis singgungnya dinyatakan oleh $\boxed{2y = \sqrt3\leftx-\dfrac{\pi}{6}\right +1}$ Jawaban b Untuk $x = \dfrac{\pi}{3}$, diperoleh $\begin{aligned} f\left\dfrac{\pi}{3}\right & = \cot \dfrac{\pi}{3}-2 csc \dfrac{\pi}{3} \\ & = \dfrac{\sqrt3}{3}-2 \cdot \dfrac23\sqrt3 \\ & = 1-4\dfrac{\sqrt3}{3} = -\sqrt3 \end{aligned}$ Titik singgung di $\left\dfrac{\pi}{3}, -\sqrt3\right.$ Turunan pertama fungsi $fx= \cot x-2 \csc x$ adalah $\begin{aligned}vf'x & = -\csc^2 x-2-\csc x \cot x \\ & = 2 \csc x \cot x-\csc^2 x \end{aligned}$ Gradien garis singgungnya adalah nilai fungsi $fβ$ saat $x = \dfrac{\pi}{3}$, yaitu $\begin{aligned} m & = fβ\left\dfrac{\pi}{3}\right \\ & = 2 \csc \dfrac{\pi}{3} \cot \dfrac{\pi}{3} -\csc^2 \dfrac{\pi}{3} \\ & = 2 \cdot \dfrac23\sqrt3 \cdot \dfrac13\sqrt3-\left\dfrac23\sqrt3\right^2 \\ & = \dfrac43-\dfrac{4}{9}3 = 0 \end{aligned}$ Persamaan garis singgung kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{3}, -\sqrt3\right$ dan bergradien $m = 0$ adalah $\begin{aligned} y & = mx-x_1+y_1 \\ y & = 0\leftx-\dfrac{\pi}{6}\right + -\sqrt3 \\ y & = -\sqrt3 \end{aligned}$ [collapse] Baca Juga Materi, Soal, dan Pembahasan β Turunan Fungsi Implisit Soal Nomor 6 Tentukan persamaan garis normal pada kurva fungsi trigonometri di bawah ini di titik yang diberikan. $h\theta = \theta + \sin \theta$ di titik yang berordinat $0.$ $fx = x \cos x$ di titik yang berabsis $x = \dfrac{\pi}{3}.$ Pembahasan Jawaban a Diketahui $h\theta = \theta + \sin \theta.$ Untuk $y = 0$, diperoleh $0 = \theta + \sin \theta$ sehingga haruslah $\theta = 0.$ Titik singgung di $0, 0.$ Turunan pertama fungsi $f\theta= \theta + \sin \theta$ adalah $f'\theta = 1 + \cos \theta.$ Gradien garis singgungnya adalah nilai fungsi $fβ$ saat $\theta = 0,$ yaitu $m = f'0 = 1 + \cos 0 = 2.$ Garis normal adalah garis yang tegak lurus dengan garis singgung dan melalui titik singgungnya. Untuk itu, kita peroleh gradien garis normalnya $m_n = -\dfrac{1}{m} = -\dfrac12.$ Persamaan garis normal kurva yang melalui titik $x_1, y_1 = 0, 0$ dan bergradien $m_n = -\dfrac12$ adalah $\begin{aligned} y & = m_nx-x_1+y_1 \\ y & = -\dfrac12x-0 + 0 \\ y & = -\dfrac12x. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{y = -\dfrac12x}$ Jawaban b Diketahui $fx = x \cos x.$ Untuk $x = \dfrac{\pi}{3},$ diperoleh $\begin{aligned} f\left\dfrac{\pi}{3}\right & = \dfrac{\pi}{3} \cos \dfrac{\pi}{3} \\ & = \dfrac{\pi}{3} \cdot \dfrac12 \\ & = \dfrac{\pi}{6} \end{aligned}$ Titik singgung di $\left\dfrac{\pi}{3}, \dfrac{\pi}{6}\right.$ Turunan pertama fungsi $fx = x \cos x$ adalah $f'x = \cos x-x \sin x.$ Gradien garis singgungnya adalah nilai fungsi $fβ$ saat $x= \dfrac{\pi}{3}$, yaitu $\begin{aligned} m & = fβ\left\dfrac{\pi}{3}\right \\ & = \cos \dfrac{\pi}{3}-\dfrac{\pi}{3} \sin \dfrac{\pi}{3} \\ & = \dfrac12-\dfrac{\pi}{3} \cdot \dfrac12\sqrt3 \\ & = \dfrac12-\dfrac{\sqrt3}{6}\pi \\ & = \dfrac{3-\sqrt3\pi}{6}. \end{aligned}$ Garis normal adalah garis yang tegak lurus dengan garis singgung dan melalui titik singgungnya. Untuk itu, kita peroleh gradien garis normalnya, yakni $m_n = -\dfrac{1}{m} = \dfrac{6}{\sqrt3\pi-3}.$ Persamaan garis normal kurva yang melalui titik $x_1, y_1 = \left\dfrac{\pi}{3}, \dfrac{\pi}{6}\right$ dan bergradien $m_n = \dfrac{6}{\sqrt3\pi-3}$ adalah $\begin{aligned} y & = m_nx-x_1+y_1 \\ y & = \dfrac{6}{\sqrt3\pi-3}\leftx-\dfrac{\pi}{3}\right + \dfrac{\pi}{6}. \end{aligned}$ Jadi, persamaan garis normalnya dinyatakan oleh $\boxed{y = \dfrac{6}{\sqrt3\pi-3}\leftx-\dfrac{\pi}{3}\right + \dfrac{\pi}{6}}$ [collapse]
Tentukanpersamaan garis singgung fungsi trigonometri dengan. Silvia azkal azkya fgradien garis disi
PembahasanTentukan titik singgung, karena maka Di dapatkan titik singgungnya . Kemudian tentukan turunan pertama dari Tentukan gradiennya, Persamaan garis singgung, Jadi, persamaan garis singgungnya adalah . Oleh karena itu, jawaban yang benar adalah titik singgung, karena maka Di dapatkan titik singgungnya . Kemudian tentukan turunan pertama dari Tentukan gradiennya, Persamaan garis singgung, Jadi, persamaan garis singgungnya adalah . Oleh karena itu, jawaban yang benar adalah D.
GRADIENDAN PERSAMAAN GARIS SINGGUNG. FUNGSI TRIGONOMETRI. Konsep 1) Diketahui f(x) adalah fungsi Trigonometri dan f '(x) turunan pertama f(x). Jika titik ( a,b ) terletak pada f(x) maka f '(a) = m = Kemiringan ( gradien ) garis singgung f(x) dititik ( a,b ) 2) Persamaan garis singgung f(x) dititik ( a,b ) adalah y - b = m ( x - a )
Videopembelajaran ini membahas penerapan turunan fungsi trigonometri dengan sub materinya adalah persamaan garis singgung pada fungsi trigonometri. Semoga i
Divideo ini akan di bahas bagaimana cara menetukan persamaan garis singgung dari fungsi trigonometri pada titik tertentu
Diperolehpersamaan garis singgung di titik A adalah $ y = 2x + 1 \, $ dan di titik B adalah $ y = 0 $ . Menentukan titik potong kedua garis singgung : garis singgungnya : $ y = 0 \, $ dan $ y = 2x + 1 $
Qh1Bwb. 93d2rsp9ky.pages.dev/10693d2rsp9ky.pages.dev/42993d2rsp9ky.pages.dev/32793d2rsp9ky.pages.dev/30193d2rsp9ky.pages.dev/8593d2rsp9ky.pages.dev/5293d2rsp9ky.pages.dev/48093d2rsp9ky.pages.dev/302
persamaan garis singgung fungsi trigonometri